The Generalized Inverse in Linear Programming Basic Theory

نویسنده

  • L. Duane Pyle
چکیده

Properties of the (Moore-Penrose-Bjerharamar) generalised inverse A of an arbitrary m by n matrix A are presented and utilized in formulating a linear programming problem, in terms of the eigenvectors of I A + A, which is equivalent to the direct (equalities) form of the linear programming problem. The duality theorem of linear programming is considered from the point of view of this reformulation and a characterization of duality in terms of orthogonality is derived. Other properties of the reformulation are used to characterize edgea and extreme points of the convex set of feasible solutions in terms of eigenvectors of certain projection matrices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Target setting in the process of merging and restructuring of decision-making units using multiple objective linear programming

This paper presents a novel approach to achieving the goals of data envelopment analysis in the process of reconstruction and integration of decision-making units by using multiple objective linear programming. In this regard, first, we review inverse data envelopment analysis models for data reconstruction and integration. We present a model with multi-objective linear programming structure in...

متن کامل

SOME PROPERTIES FOR FUZZY CHANCE CONSTRAINED PROGRAMMING

Convexity theory and duality theory are important issues in math- ematical programming. Within the framework of credibility theory, this paper rst introduces the concept of convex fuzzy variables and some basic criteria. Furthermore, a convexity theorem for fuzzy chance constrained programming is proved by adding some convexity conditions on the objective and constraint functions. Finally,...

متن کامل

A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.

متن کامل

A generalized implicit enumeration algorithm for a class of integer nonlinear programming problems

Presented here is a generalization of the implicit enumeration algorithm that can be applied when the objec-tive function is being maximized and can be rewritten as the difference of two non-decreasing functions. Also developed is a computational algorithm, named linear speedup, to use whatever explicit linear constraints are present to speedup the search for a solution. The method is easy to u...

متن کامل

A New Two-Stage Method for Damage Identification in Linear-Shaped Structures Via Grey System Theory and Optimization Algorithm

The main objective of this paper is concentrated on presenting a new two-stage method for damage localization and quantification in the linear-shaped structures. A linear-shaped structure is defined as a structure in which all elements are arranged only on a straight line. At the first stage, by employing Grey System Theory (GST) and diagonal members of the Generalized Flexibility Matrix (GFM),...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018